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Abstract. We present a dodecagonal quasiperiodic tiling of the plane in terms of three 
kinds of tiles: a square, a regular hexagon and a thin rhombus whose acute inner angles 
are 30". The dodecagonal tiling is self-similar with respect to a dilatation by 2 + J3. It is 
associated with a dodecagonal quasiperiodic lattice which is obtained by a projection from 
a hyperhoneycomb lattice in four dimensions. The hyperhoneycomb lattice is a non-Bravais 
lattice composed of four Bravais sublattices and we must assign 'windows' with different 
orientations to different sublattices. We discuss in detail the relationships of the present 
method of obtaining a dodecagonal tiling to other methods. 

1. Introduction 

Since the discovery of a dodecagonal quasicrystal (Ishimasa et a1 1985), several 
dodecagonal quasiperiodic lattices (quasilattices) in Z D  (two dimensions) were pro- 
posed as models of the quasicrystal (Stampfli 1986, Niizeki and Mitani 1987, Ishihara 
1987, Yang and Wei 1987). Some of the dodecagonal quasilattices (DQL) are obtained 
with the projection method (for the projection method, see Krammer and Neri (1984), 
Kalugin et aZ(1985), Duneau and Katz (1989, Janssen (1986) and Gahler and Rhyner 
(1986)) from a 4~ hyperhexagonal lattice (Niizeki and Mitani 1987, hereafter referred 
to as I). The DQL are self-similar with respect to a composite transformation between 
a dilatation by T~ = (d3  + 1)/d2, the 'platinum ratio' introduced in I ,  and a rotation 
by 15". They give rise to tilings of the plane. The basic tiles of one of the tilings are 
a regular triangle, a square and a thin rhombus whose acute inner angles are 30". 

On the other hand, Ishihara (1987) and, independently, Yang and Wei (1987) 
reported that DQL can be obtained with the projection method from a 6~ simple 
hypercubic lattice. The basic tiles of the tiling associated with the resulting dodecagonal 
quasilattice are the square, the thin rhombus and a thick rhombus whose acute inner 
angles are 60". The thick rhombus is identical to a union of the two regular triangles. 

In this paper we will present a dodecagonal quasiperiodic tiling of the plane in 
terms of the thin rhombi, the squares and regular hexagons, each of which is identical 
to a union of the three thick rhombi. The tiling is self-similar with respect to a simple 
dilatation by 2 + v'3. The tiling is associated with a dodecagonal quasiperiodic lattice 
obtained by a projection from a 4~ hyperhoneycomb lattice, which is the direct product 
of two ZD honeycomb lattices. The 4~ lattice is not a Bravais lattice and no quasilattices 
have been obtained previously from a non-Bravais lattice. 

Since the DQL associated with the present dodecagonal quasiperiodic tiling is 
constructed in a similar way as that by which DQL are constructed in I from a 4~ 
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hyperhexagonal lattice, we summarise in 5 2 the construction in I. In 8 3, we investigate 
in detail properties of the 4~ hyperhoneycomb lattice, especially its relationship with 
the 4~ hyperhexagonal lattice. In § 4, we present a construction of a DQL by a projection 
from the 4~ hyperhoneycomb lattice. We investigate in § 5 a dodecagonal quasiperiodic 
tiling associated with the DQL constructed in the preceding section. We investigate in 
0 6 self-similarity of the dodecagonal quasiperiodic tiling. In the final section, § 7, we 
discuss related subjects, in particular, the relationships of the present method of 
obtaining a dodecagonal tiling with other methods. 

2. Summary of the construction of DQL in I 

The starting lattice is a 4~ hyperhexagonal lattice, L H H ,  which is a direct product of 
two identical triangular lattices in 2 ~ .  The plane (a 2~ Euclidean space) is identified 
with the complex plane and a 2~ triangular lattice, LT, with the set of all the triangular 
integers (Eisenstein integers), Z [ w ]  = {n,+ n2wln , ,  n2e Z } ,  where w =exp(2ri /3)  
(=i(- l  +J3i)). Then, L H H  = LTx LT is identified with a complex 2~ lattice as L H H  = 
{( v l  , v 2 ) / v 1 ,  v2 E 2[0]},  which is included in a complex 2~ space, C2(  = C x C )  = 
{ ( Z l ,  Z Z ) l Z l ,  z2 E C } .  

A 2 x 2 complex matrix defined by 

R = ( Y  z) 
with 5 = exp(i.rri) (= i ( J 3  + i ) )  is a unimodular unitary matrix of 2[0], an integral 
domain, because l2 = 1 + w is a triangular integer and det R = -5*, which is a unit of 
the integral domain. Therefore, linear transformation r represented by R is a point 
symmetry of L H H  ; r is an orthogonal transformation which transforms L H H  into itself. 
Since R 6 =  - I  and RI2= I with I being the unit 2 x 2  matrix, the order of r is 12. 

The eigenvalues of R are 5 and -5 and C 2  decomposes into the corresponding 
two invariant complex-iD subspaces, C+ and C - ,  which are called the external space 
and the internal one, respectively. Note that both the subspaces can be identified with 
2~ Euclidean spaces. The projections of ( z ,  , z2) E C 2  onto C+ and C- are given, apart 
from a numerical factor, by z ,  = z ,  * 5z2 because (1, * c )  are two row eigenvectors of 
R corresponding to eigenvalues *[. The action of r onto C2 decomposes into two 
linear transformations, z* + * l z * ,  which are rotations of C, .  

A dodecagonal quasilattice (DQL) is a set of points in C+ and given by QD= 
{ v, + 5v21( v, , v2)  E L H H  and v 1  - 5v2+ C$ E W}, where C$ is a complex number and W, 
the window, is a finite domain in C - .  

3. The hyperhoneycomb lattice in 4~ 

A triangular lattice can be decomposed into three identical sublattices which are also 
triangular lattices but with lattice constants being d 3  times that of the original one. 
To be more specific, the sublattices are labelled by numbers in the Galois field 
Z3 = {0,1,2} = 2 / 3 2 ;  

L T =  U LT(p) 
P t Z 3  

LT(p) = {n, + n2wln l ,  n 2 €  Z and n, + n 2 = p  mod 3). 
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A multiplication of l 2  onto C gives rise to a rotation of C by 60°, so that LT is 
invariant against the multiplication; f2LT = LTi. It transforms the three sublattices of 
L, into themselves as ~ ’ L ~ ( o )  = L ~ ( o ) ,  [ * L ~ (  1) = LT(2) and C2LT(2) = ~ ~ ( 1 ) .  Therefore, 
the union of two sublattices, LT(l)  and LT(2), is invariant against the multiplication. 
The union is nothing but the honeycomb lattice, LHC. That is, LHC = LT( 1) U LT(2) 
and 12LHc= L H C .  An important difference of L H c  from LT is that it is not a Bravais 
lattice. We remark here for later convenience the relationships, 12LT(p)  = L T ( - p )  with 
p = 1 or 2, because -1 

The triangular lattice LT(0) naturally gives rise to a partition of the plane into 
regular triangles. Each triangle is nothing but the Voronoi polygon ( Wigner-Seitz cell) 
of a lattice point of L H C  = LT(l) U LT(2). We shall call such a division (of the plane) 
a Voronoi partition associated with LHC. Mathematically, a Voronoi partition is a set 
of the points on the boundaries between different Voronoi cells. 

It is well known that LT is obtained from a simple cubic lattice, Lsc,  by projecting 
it along the [ 11 11 direction; the 2~ lattices of (1 11) lattice planes of Lsc are projected 
to the three triangular sublattices of LT because they stack along [ill] like 
. . . ABCABC. .  . . 

Since LT consists of three triangular sublattices, L H H  (= LT x LT) are divided into 
nine sublattices, which are 4~ hyperhexagonal lattices but with a lattice constant being 
4 3  times that of L H H .  The nine sublattices are labelled by pairs of elements in Z,. 
Alternatively, they are labelled by numbers in the Galois field Z,[ i] = {p + iqlp, q E Z,} 
(= Z[ i]/3Z[ i]  with Z[ i] being the integral domain of Gaussian integers) as L H H ( A ) ,  

A E Z,[i]. The nine sublattices of L H H  are transformed by r to themselves. We can 
easily confirm from equations ( I )  and (2) and the relationships, 12LT(q) = LT(-q), 
that L H H ( A )  with A = p + i q  Z,[i] is transformed to L H H ( A ’ )  with A’=-q+ip = i A  
( E  Z,[il). 

Note that L H H  is isomorphous to the 4~ lattice obtained from a 6~ simple hypercubic 
lattice, LSHC( = Lsc x Lsc), by projecting it onto a 4D subspace, E4, which is orthogonal 
to the [ 11 10001 and [ O O O l l l ]  directions; the nine sublattices of L H H  are the projections 
of the 4D lattices of parallel 4~ lattice planes of LsHC to E4. 

A 4~ hyperhoneycomb lattice, L H H C ,  is defined as the direct product of two 2~ 

honeycomb lattices, L H H C  = L,, x LHC. It is decomposed into four identical sublattices, 
which are labelled by numbers in A = (1 + i, 2 +  i, 2 +  2i, 1 + 2i} c Z3[ i]. r is a point 
symmetry, also, of L H H C  and the four sublattices are transformed into themselves as 

The Vonoi polytope of a lattice point, ( v l ,  v J ,  of L H H C  = LHc x L H ~  is a hyper- 
trigonal prism, V = TI x T2 = {(zl, z2)lz1 E TI, z2 E T2}, where T, (or T,) is a Voronoi 
triangle of a lattice point, v, (or v,), of L H C .  Therefore, the Voronoi partition (of the 
4~ Euclidean space) associated with L H H C  is given by (IIHc x E,) U ( E2 x IIHc), where 
E2 is a 2~ Euclidean space and IIHc the Voronoi partition associated with the L H C .  

2 and -2  = 1 modulo 3. 

~ L H H ( ~ ) = L H H ( ~ ~ )  (note that A = i A ) .  

4. A DQL by a projection of a 4~ hyperhoneycomb lattice 

Since r is a point symmetry, also, of L H H C ,  we may construct a DQL by a projection 
of L H H ,  onto C, ,  the external space. It is important at this point how to choose the 

t Let c be a number and let X = {x, x 2 , .  . .} be a set of numbers. Then C X  is a set of numbers defined by 
c x  = { c x ,  , c x 2 ,  . . . }. 
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Figure 1. ( a )  A window of a trigonal hexagon, which is the projection of a Voronoi 
polytope of LHHc onto C - .  ( b )  A division of the window in ( a )  into subwindows, which 
are associated with the five types of vertices. 

window in C - ,  the internal space. A most natural choice is the projection of a Voronoi 
polytope of LHHC. There is a complication here because LHHC is not a Bravais lattice; 
the projections of the Voronoi polytopes of lattice points belonging to different 
sublattices have different orientations in the internal space, C - ,  although they have 
the same shape and size. Therefore, windows with different orientations are assigned 
to different sublattices of LHHC. They are labelled by numbers in A as W(A), A E A .  
Since rLHHc(A) = LHHC(i/\) for VA E A and Y reduces in C- to a multiplication of -i, 
we obtain - lW(A) = W (  i h )  for VA E A. These relationships fix relative orientations 
among the windows. The shape and the size of a representative window, W (  1 + i ) ,  is 
obtained by projecting T x T onto C-, where T is a regular triangle whose vertices 
are at 12, -1 and l-' on C - .  It is given by W (  1 + i )  = {zl - lz21zl E T, z2 E T} ,  which is 
an equisided trigonal hexagon, as shown in figure l ( a ) .  Its smaller three inner angles 
are 90" and the larger three 150". The length of the six sides is equal to d3. The 
positions of the three vertices with inner angles being equal to 150" are at 1 + i, (1 + i ) w  
and (1 + i ) w 2  on C - .  

We can now write down a DQL as 

O D ( 4 ) =  U { v i + l v z l ( v i ,  v z ) ~ ~ H H ( ~ ) a n d  v i - i v 2 + 4 ~  w(A)I  ( 3 )  
A €  i 

where 4 is a complex number representing the 'phase vector'. 

5. A dodecagonal quasiperiodic tiling associated with a DQL 

If a pair of sites in a 2~ quasilattice are projections of a pair of nearest neighbours in 
the starting higher-dimensional lattice, we call it an arithmetic neighbour pair (Katz 
and Duneau 1986). We can assign a bond to each part of such a pair. Then the bonds 
form a Z D  quasiperiodic network or, equivalently, give rise to a quasiperiodic tiling of 
the plane. Each site of LHC has three nearest neighbours and that of LHHC (=  LHc x LHc) 
has six (= 3 + 3). A site in the DQL presented in the previous section has six arithmetic 
neighbours at most and a bond can assume, by equation ( 3 ) ,  one of twelve orientations, 
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1, 5, C 2 , ,  . , , 5". The DQL has only five types of vertices, which will be identified easily 
in the tiling to be presented shortly. They are associated with the subwindows to which 
the original windows are divided as in fiugre l (b) ;  subwindows which are congruent 
with each other correspond to vertices which differ only in their orientations (for the 
principle of dividing a window into subwindows, see Katz and Duneau (1986)). The 
coordination numbers of the five vertices range from three to six and we denote them 
as V,, V4, V4,, V5 and V,, respectively; both of V4 and V,. have coordination number 
4. A vertex has the same point symmetry as that of the associated subwindow; V, and 
V,. have a mirror symmetry and V, a trigonal symmetry. The frequencies of appearances 
of different types of vertices are proportional to the areas of the associated subwindows: 
the probabilities of appearances of V,, V4, V,., V, and V, are calculated to be 3cr i i ,  
3J3cri3,  J3 CT;', 3c5-i' and mi4, respectively, with c =  11242 and r,,= 

A portion of the dodecagonal quasiperiodic tiling discussed above is shown in 
figure 2. There are only three kinds of tiles; a square (Ts) ,  a regular hexagon (TH) 
and a thin rhombus ( TR) whose acute inner angles are 30". The appearance of hexagonal 
tiles is due to the fact that L H H C  includes 2~ honeycomb lattices as its lattice planes. 
Hexagons take two orientations corresponding to the two terms in v l+5v2 or, 
equivalently, to the two series of 2~ lattice planes with honeycomb structure. On the 
other hand, squares and rhombi are related to projections of other series of 2~ lattice 
planes with a square lattice structure. 

A notable feature of the tiling is that two tiles of the same kind never neighbour 
side by side. This appears to be the sole principle of the tiling but we cannot prove 
it yet. The relative frequencies of appearances of the three kinds of tiles, T,, TH and 
TR, to that of the sites (vertices) are calculated from the vertex statistics to be c J 3 r i i ,  
c r i '  and cJ37p1, respectively, with c = 11242. 

( 4 3 1  1 ) / J 2 ( =  2 COS(T/12)). 

Figure 2. A docecagonal quasiperiodic tiling obtained by a projection from a 4 D  hyper- 
honeycomb lattice. There are two types of vertices, V., and V, , whose coordination numbers 
are four. V, is a vertex at which two thin rhombi and two squares meet. 



2172 K Niizeki 

The basic tiles of the present tiling are only polygons with even number of vertices 
in contrast to the case in I .  Therefore, the present DQL can be divided into two 
interconnected sublattices. In fact, it is divided into four sublattices which are labelled 
by numbers in A on the basis of their correspondence to the sublattices of LHH; two 
sublattices labelled by two consecutive numbers in series 1 + i + 2 + i + 2 + 2i + 1 + 2i + 

1 + i are bonded with each other but not in other cases. The four vertices of a square 
or a rhombus belong to the four different sublattices from one another. The six vertices 
of a hexagon belong to two sublattices labelled by two consecutive numbers in the 
above series. 

6. Self-similarity of the dodecagonal quasiperiodic tiling 

The self-similarity of a quasilattice and that of the associated quasiperiodic tiling are 
connected with a linear transformation which is an automorphism (one-to-one mapping 
onto itself) of the starting lattice (Katz and Duneau 1986, Gahler 1986). The linear 
transformation used in I is the one represented by the unimodular matrix, M = I + R, 
whose eigenvalues are 1 + 5 and 1 - 5. It is an automorphism of LHH and transforms 
the nine sublattices into themselves as LHH(A) + LHH((l+ i ) A )  ( A  E Z,[i]). Unfortu- 
nately, it is not an automorphism of LHHC because it does not transform the four 
sublattices into themselves. Thus, the DQL presented in this paper is not self-similar 
with respect to the composite transformation between a dilatation by rp = 11 + 51 and 
a rotation by arg( 1 + l ) ,  in contrast to the DQL in I. 

On the other hand, a linear transformation represented by M '  = 2 1  + R + R-' 
(= R - ' M 2 )  is an automorphism of LHHC because its sublattices are transformed to 
themselves as L H H ( A )  + LHH(2h) (note that 212 = A). It decomposes into a dilatation 
of C+ by ~ ; = 2 + J 3  (=2+2cos(;7r)) and a contraction of C- by 7p2=2-J3 .  
Moreover, it can be shown easily that W(2A) = - W(A) and 7p2 W(2A) = -7p2 W(A), 
which is identical to the central subwindow of W(A) as seen in figure l (6) .  From 
these, we can conclude as in I that the present DQL and the associated quasiperiodic 
tiling are self-similar with respect to a dilatation by T;.  

We show in figure 3 the once inflated tiling which is superposed onto the original 
one. The inflated quasilattice is obtained by leaving only the vertices of type V, in the 
original lattice, for the reason mentioned in the last paragraph. If the tiling represented 
by the bold lines in figure 3 is regarded to be the original tiling, the thin one is its 
deflated version. The rules of decorating Ts and TR on the deflation are obvious from 
figure 3. On the other hand, the one for T H  is complicated. We can find it by scrutinising 
figure 3. We will not, however, mention it here but leave it to the reader for his exercise. 

7. Discussions 

The Fourier transform of a quasilattice constructed by the projection method is easily 
calculated (Zia and Dallas 1985, Katz and Duneau 1986) and we can obtain the 
diffraction pattern. The positions of the Bragg spots are common for all the DQL except 
scaling factors which are related to the 'lattice constants'. However, the relative 
intensities among different spots of a particular DQL depend on the LI class to which 
it belongs. The diffraction pattern of a DQL presented in I has a 'self-similarity' 
characterised by complex number T = 1 + 5( = T,, exp(h7ri)); a series of spots with 
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Figure 3. An original dodecagonal quasiperiodic tiling (thin lines) and its inflated version. 

increasing intensities are arranged spirally at T' ( n  = 1,2,3, . . . ) times the position of 
the starting spot, where the reciprocal space is identified with a complex plane. On 
the other hand, we can expect for the diffraction pattern of the present DQL only that 
the spots are arranged radially because its self-similarity is not characterised by 7 but 
by T;( = 1.1'). Apart from this point, the diffraction pattern of the present DQL is similar 
to the one in I and we will not present the figure in this paper. 

The LI class of the DQL in this paper has been obtained by including only four 
sublattices of L H H  among the nine. We may obtain different LI classes of DQL if other 
sublattices are included and different windows are assumed for different sublattices; 
the windows must be consistent with a macroscopic dodecagonal symmetry. Of the 
LI classes, there is one which is closely related to the one presented in the present 
paper; a DQL belonging to the former LI class is obtained from the latter by adding 
lattice points to all the centres of the hexagonal tiles. The additional lattice points 
come from four sublattices, L H H (  i'), k = 0-3, of L H H  and the windows to be assigned 
to the four sublattices are regular triangles with sides of length being equal to d3. The 
three vertices of a representative window, say, W( l ) ,  are at 1, o and o2 on C - .  Other 
three windows are related to W( l )  as W(i') = ( - l )kW(l ) ,  k = 1-3. This LI class is, 
alternatively, obtained by a projection from L s H C ,  the 6~ simple hypercubic lattice; 
the close connection between the two ways, i.e. the projection from L H H  and the one 
from L S H C ,  will be understandable by the relationship between the two lattices, as 
mentioned in § 3. The LI class is, however, different from the one obtained by Ishihara 
(1987) with the projection method from LSHC; the maximum coordination number of 
the former LI class is six but the one for the latter is twelve. The LI class obtained 
by Ishihara can be derived by the present method if different windows from the above 
choices are used. 

Quasiperiodic tilings of the plane can be obtained, alternatively, by using the grid 
method (de Bruijn 1981, Gahler and Rhyner 1986, Stampfli 1986). In this method, a 
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quasiperiodic tiling is obtained as a dual tiling to a quasiperiodic grid, which is usually 
a superposition of two or more periodic grids. It was proved generally by Gahler and 
Rhyner (1986) that the projection method and the grid method are equivalent in the 
cases where the basic tiles are rhombi. We can generalise this result to the cases where 
some of the basic tiles are not rhombi as the present case; a quasiperiodic tiling 
obtained by a projection from a higher-dimensional lattice is obtained also by the grid 
method if the window(s) used in the projection method is the projection(s) of the 
relevant Voronoi polytope(s) of the starting lattice onto the internal space. Then, the 
grid to be used in the grid method is the cross section of the Voronoi partition associated 
with the starting lattice along a parallel subspace to the external space (this will be 
published elsewhere). Accordingly, the dodecagonal quasiperiodic tiling in the present 
paper is obtained also by the grid method. The relevant grid is a double triangular 
grid which is a superposition of two triangular grids GT and GT as shown in figure 4; 
GT and GT are the cross sections of IIHHCXE~ and E2xIIHHC,  respectively, so that 
the axes of GT are rotated by 30" from those of GT. A regular hexagon in the tiling 
presented in figure 2 is dual to a triple crossing point of either triangular grid; two 
possible orientations of the hexagons correspond to the two triangular grids. A crossing 
point between two lines belonging to different triangular grids is dual to a square or 
a thin rhombus depending on the crossing angle. 

Figure 4. A double triangular grid, whose dual counterpart is a dodecagonal quasiperiodic 
tiling as given in figure 2. 

Incidentally, we remark that the double honeycomb grid used by Stampfli (1986) 
for constructing a dodecagonal quasiperiodic tiling is nothing but a cross section of 
the Voronoi partition of LHH (= LT x L,) along a parallel plane to the external space; 
the Voronoi partition of LT is of honeycomb structure. On the other hand, the LI class 
obtained by Ishihara (1987) can be derived from a double KagomC grid which is a 
superposition of two KagomC grids in 2 ~ .  
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Note added in proof: A dodecagonal quasiperiodic tiling in Ishihara (1987) has been published subsequently 
(Ishihara et a/  1988). 
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